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1	 Introduction

As we have seen throughout this text, economics is grounded in mathemat-
ics and statistics. This Appendix shows how mathematics and quantitative 
methods can help nonprofit managers and social entrepreneurs make more 
informed managerial decisions by applying techniques from differential calcu-
lus, statistics, econometrics, and experimental economics. (The presentation 
here is rudimentary; however, references are provided for those seeking fur-
ther study.) Differential calculus allows us to think more precisely about the 
problem of “optimization,” that is, finding the value of a decision variable that 
produces the best outcome. The strategy of “thinking at the margin” discussed 
in Chapter 5, which allowed us to determine the price for maximizing profits, 
for example, derives from the principles of calculus. Various other economic 
decisions, such as minimizing costs and maximizing social benefits can be 
framed as optimization problems solved by differential calculus, as well.

Statistics, based on the concept of probability, allows managers to analyze 
economic data in various ways to better inform their decisions. Recall that 
probability is a basic construct underlying the analysis of decisions under 
risk, as considered in Chapter 10. Statistical techniques also underlie the 
estimation of mathematical models to characterize the relationships between 
two or more economic variables, such as demand functions that relate price 
to quantity demanded and other variables such as income or age of consum-
ers, or supply functions that relate price to quantity supplied and other vari-
ables such as size and age of firms. Econometrics is the specific application 
of statistical modeling to economic problems, which allows interpretation of 
results in terms of concepts such as price and income elasticities, as discussed 
in Chapter 9. Statistical and econometric methods are needed to model eco-
nomic functions because real data involves uncertainty deriving from impre-
cise measurement, intrinsic randomness of the phenomenon of interest, and 
the impacts of various measured and unmeasured factors that may influence 
data values. Statistical techniques are designed to address these issues.
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While statistical and econometric techniques are most often applied to data 
that is readily available, such as data collected by the government as part 
of a census or in connection with tax collection or regulation (such as IRS 
990 data for nonprofit organizations), increasingly analysts and managers 
conduct original research by formulating experiments designed to collect 
the exact type of data they desire for making their particular decisions. In 
particular, they use the scientific method to conduct lab and field experi-
ments with human subjects, an approach that helps to reduce uncertainty 
about the size and nature of behavioral responses. Chapter 12 reviews this 
approach to economic decision making in the nonprofit and social enterprise 
sectors. Here, in section 4, we review the basic concepts and rudiments of 
experimental design to help managers engage in this approach.

2	 Calculus

Economics focuses substantially on how economic actors can obtain the 
best possible outcome given the constraints they face. For example, consum-
ers wish to buy the best collection of goods, given the money available to 
them. Or a firm wishes to produce the optimal quantity of a good, given 
consumers’ willingness to pay for them, which for typical for-profit firms is 
the quantity that maximizes its profits. In the nonprofit and social enterprise 
sectors, there is the question of what exactly the organization is trying to do. 
Does it want to serve the largest number of clients with its limited income, or 
the neediest clients? Does it wish to achieve a certain combination of its own 
profits and benefits to clients, bring about a particular change in society, or 
some weighted combination of such objectives? Any of these goals may be 
appropriate for a particular nonprofit organization or social enterprise. The 
techniques discussed in this section illustrate how to achieve a stated goal as 
fully as possible, whatever it may be.

Economists apply quantitative methods to solve decision problems of two 
types. Some decisions concern whether to do one thing or another (should we 
open a gift shop or not?). Other decisions require selecting a single alterna-
tive from a finite list of possibilities (should we build a new facility down-
town, in the eastern suburb, or in the western suburb?). These are “discrete 
choice” or “whether” problems, solved by calculating the net benefits of each 
alternative and selecting the alternative with the highest net benefit. Other 
questions are about how much of something to choose (what size the facility 
should be), which requires picking a number from an infinite number of 
possible values. The latter are “continuous choice” or “how much” problems, 
solvable using the tools of calculus. For example, “how many clients should a 
counseling service see per week on average?” is a continuous choice decision, 
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as the answer might be 1.37 or 12.6438 or any other positive number in a 
feasible particular range.

This section outlines some of these methods that apply to these decisions 
and how managers of nonprofit organizations and social enterprises might 
use them. We begin by discussing the generic concept of optimization.

Optimization

Generically, economics studies how consumers and producers make choices 
under constraints. This applies to nonprofit organizations and social enter-
prises, which evaluate choices by their impacts on mission-attainment and 
which face budget, regulatory and other constraints. The mission may 
require maximizing some quantity, like exposure to opera, or minimizing 
some quantity, like the number of clients denied service. Maximization or 
minimization of a variable is called “optimization.” Before describing the 
mechanics of optimization, we need to discuss the mathematical formulation 
of mission, that is, the organization’s “objective function,” which translates 
possible outcomes into a number that can be used to place outcomes in rank 
order and identify the best outcomes.

This is not a trivial problem. Unlike the case of for-profit firms, there is no 
generally accepted, mathematically-based model predicting the nature of a 
given organization’s objective. For-profit firms usually seek to maximize their 
profits because their owners (shareholders) want to receive the biggest divi-
dend checks they can get and because for-profit firms that do not maximize 
profits are ripe for a takeover bid. Nonprofit organizations and social enter-
prises come in many forms, with diverse stated missions. The shared fact 
that nonprofits cannot distribute profits to those in control does not limit 
them to a single objective function. Indeed, nondistribution of profits makes 
diverse missions sustainable – there are no dividend-receiving shareholders 
or takeover threats that force nonprofit organizations to maximize profits. 
The situation for social enterprises is even more complex. These enterprises 
are designed to balance profits with social mission in a variety of ways, with 
diverse limitations on profit distribution, and different parameters of cor-
porate governance and claims to organizational assets (Young, Searing, and 
Brewer, 2016). Again, feasible organizational objectives are highly diverse.

Mission statements are suggestive, but do not suffice to establish an organi-
zation’s objective function. Mission statements are necessarily vague, in 
order to secure the widest possible stakeholder buy-in. Mission statements 
are also used to manipulate the impressions of external stakeholders. For 
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mathematical purposes, mission statements are incomplete. They specify all 
the things the organization cares about, but rarely if ever detail exactly how 
the organization will weigh a gain in one objective against a loss in some 
other objective (Tuckman and Chang, 2006).

Steinberg (2006) summarizes possible objective functions appearing in the 
nonprofit literature. These include minimizing cost subject to serving a given 
number of consumers, maximizing the social benefit of their output, maxi-
mizing the total number of consumers served, maximizing the utility of those 
served, or even maximizing profit, subject to a given budget constraint. Before 
attempting to apply the quantitative methods discussed here, a nonprofit 
manager or social entrepreneur must give serious thought to what, exactly, 
her organization is attempting to optimize. Nonprofits will want to maximize 
profits from certain activities (e.g., unrelated income sales) in order to subsi-
dize their mission-related activities, but profits in this case are the means to an 
end rather than the end itself. Profits, or financial surpluses however defined, 
enter the optimization problem as a constraint, not as an objective function. 
Simply put, to avoid bankruptcy profits cannot be persistently negative. Soup 
kitchens cannot provide free soup without donations or other sources of 
income.

Once an organization’s objective is determined, it is useful to write that objec-
tive in the language of mathematics, in the forms of an “objective function,” 
giving mathematical voice to desires of the organization. Then the calculus 
approach detailed below allows the organization to select optimal values of 
all its “choice variables” (variables that the organization controls). Some pos-
sible objective functions might be:

1.  Maximize revenue: It is unlikely that this would be the goal of a non-
profit organization or social enterprise, although some have proposed this 
( James, 1998; Niskanen, 1971), but it provides an opportunity to illustrate 
the formal notation used in optimization problems:

max
Q

 PQ

	 where: Q is the number of units sold, and
	 P is the price per unit

Note that we place a Q under the word “max” to indicate that we will maxi-
mize by choosing a value of Q. The choice variables are always listed below 
“max” or “min.” For the moment, we assume that the firm is a perfect com-
petitor, so the price is not a control variable.
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A slightly different formulation applies if the organization has market power, 
allowing it to pick (P, Q) combinations. The set of available (P, Q) combi-
nations is then constrained by market demand.1 A profit-maximizing firm 
would always pick a point on the demand curve because given some value for 
Q, it is impossible to sell at a higher price and undesirable to sell at a lower 
price than the price on the demand curve at that Q. For example, for the 
straight-line demand curve PD = a – bQ , total revenue PQ can be written as a 
function of one choice variable, Q:

max
Q

 PD (Q)Q or (a – bQ)Q or aQ – bQ2

Note that PD(Q) denotes functional dependence rather than multiplication. 
The superscript D identifies that this is the demand function, not the supply 
function which is a different equation involving p and Q .

2.  Minimize total cost:
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	 where: qi is the quantity of the ith input, i = 1, . . . , N, and
	 Pi is the price of the ith input, given by the market

By itself, this is a silly problem because the obvious way to minimize costs 
is to use no inputs and thereby produce plenty of nothing. But consider an 
orphanage serving exactly 10 children that is under great pressure to cut 
costs. Now the problem is cost minimization while producing 10 well-cared-
for children. This creates at least two constraints on input choice. First, there 
must be enough inputs to care for these children. Second, there are one or 
more constraints protecting the quality of care (such as prohibiting substitut-
ing sedatives for staff).

3.  Maximize (undistributed) profit:
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Profits are simply total revenues minus total costs. However, this formula-
tion ignores the constraint on the choice variables. The firm cannot select 
any old level of input quantities; rather, it must select an input combina-
tion that produces the chosen level of output. The relevant constraint is the 
production function, which specifies how much output is produced from 
each combination of inputs. Solving this problem requires a mathematical 
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tool that is beyond this text, Lagrangian functions and Lagrange multipliers, 
which is covered well in Chiang and Wainwright (2004). Such a technique 
requires methods of linear algebra, which are also discussed in detail in this 
source. The problem becomes much simpler if we have already solved the 
input choice part. Then we can write total cost as a function of the quantity 
of output, and output becomes our only choice variable.

4.  Maximize the number of consumers served:

max
Q

 Z(Q):

	 where: �Z(Q)is a function that gives the number of consumers served as 
a function of the quantity of output

For example, a local symphony may offer free concerts in the park because 
it wants to convert people to classical music lovers. The number of shows 
is Q, and from experience the nonprofit knows that the first five shows will 
each attract 200 listeners, the next will attract 150 listeners, and any addi-
tional shows attract 0 listeners. Although it is possible to produce 1.5 shows 
per season, because it is possible to produce 3 shows and spread them over 
2 seasons, we restrict attention to integer answers in order to illustrate the 
approach. Then the Z function is best thought of as a table of values rather 
than a formula. Here are some values it takes: if Q is 3, Z(Q) is 600, if Q is 6, 
Z(Q) is 1,150. If the cost of putting on another show was zero, the solution 
is obvious – produce six shows. But if the musicians are paid by the hour, 
there is a bankruptcy constraint on Q. If the symphony had an endowment 
yielding $10,000 per year and no other sources of revenue, the constraint 
would be:

$10,000 − C(Q) ≥ 0

	� where: C(Q) is the cost function showing the cost of performing Q 
shows

Because this is a discrete choice problem, calculus cannot be applied, but 
there are only 7 alternatives worth considering (0, 1, 2, 3, 4, 5, or 6 shows) so 
you can just figure out which one maximizes profits without causing bank-
ruptcy by doing a bit of arithmetic.

Optimization using calculus

Imagine, for a moment, a hill that first goes up and then goes down. Where 
will that hill be the highest? At the point where it stops sloping up and begins 
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to slope down. Thus, one can find the maximum point on a function by look-
ing for the level at which its slope stops increasing and begins to decrease, 
taking on a value that is not positive or negative, but equal to zero in between 
these two regions.

In the same way, imagine walking into a hole in the ground. Where does that 
hole reach a minimum? At the point where it moves from getting deeper to 
getting shallower, where the slope, is, again, equal to zero. Thus, finding a 
maximum or finding a minimum is done the same way; by finding where the 
slope is equal to zero.

We can think of the objective function as a topographic map. Maximization 
problems concern finding the peaks of the mountains in that map (perhaps 
finding the top of Mount Profit, if that is your objective), and minimization 
problems concern finding the bottom of the valleys (perhaps Valley of the 
Nethermost Cost). The way to locate the top, if you are on the side of a hill 
or mountain, is to determine which direction leads you most rapidly uphill. 
You then take a step in that direction, determine the direction of most rapid 
ascent from your new starting point, and repeat. When you get to the point 
where there are no uphill directions, you have located the peak. You reach 
the bottom of the valley if you follow the direction of steepest descent until 
there is no direction that leads you further downward. This is the essential 
insight behind computer algorithms that maximize or minimize functions 
(“hill-climbing algorithms”). The idea that all optima are at flat points of the 
topographic map underlies the mathematics of optimization and constrained 
optimization. The rate of rise or fall is the slope, calculated between two 
points on the topographic map as “rise/run;” we are looking for places where 
this slope equals zero.

To illustrate, consider a two-dimensional map in which the horizontal axis 
exhibits the quantity of production of some good (cups of coffee) and the 
vertical axis shows the resulting profit. Suppose profits are $20 when the 
firm produces 10 cups of coffee and $23 when the firm produces 12 cups of 
coffee. The slope between these points is
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The slope is positive, meaning this step to the right allowed you to climb 
Mount Profit. The algorithm requires you to keep stepping to the right 
until the slope is zero, where you have then located the optimal quantity of 
production.
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Now complicate the problem a little bit by moving to a three-dimensional 
map. On the east–west (X) axis, we include one choice variable (cups of 
coffee) and on the north–south (Y) axis we include a second choice-variable 
(packets of sugar) while measuring profit on the up-down (Z) axis. To climb 
Mount Profit, we might have to move northeast, so we need to define a 
new concept – directional slopes – before we know how to cross the map. 
The directional slope in the XZ direction is the change in profits when you 
increase the number of cups of coffee while holding sugar packets constant. 
The directional slope in the YZ direction is the change in profits when you 
increase the number of sugar packets while holding cups of coffee constant. 
There are two directional slopes at each point of the topographic map, and at 
the optimum, both must be zero.

One problem is that the function may squiggle up and down in-between the 
two points we used to calculate a slope, so we won’t locate the truly flat place 
where the optimum occurs. Consider the following parabola, and calculate 
the slope between the points x = 1 and x = 5:

The slope of the line connecting these points is zero, but the parabola is 
flat only if the top of the mountain has been strip-mined out of existence. 
Calculus suggests you move these two points progressively closer together, 
calculating the slope after each move. The limit of this process is reached 
when the two points overlap, and then we have the “slope at a point” rather 
than the slope between two points. The limit slope is the same as the slope 
of a line that just touches, without crossing, the function, so we say that it is 
slope of the “tangent” line. In turn, the formula for the slope of the tangent 
line is called the “derivative of y with respect to x,” written:
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The derivative is itself a function, as the slope of the tangent line depends 
on x. When there is only one choice variable, we can simplify the notation 
a little. If the original function is called f(x), then the derivative function 
can be written as f ’(x). Calculus textbooks develop shortcuts for figuring 
out f ’(x) known as the rules of differentiation. Here are some important 
rules:

1.	 Derivative of a constant: A constant value of y regardless of x graphs as a 
horizontal line. Its slope is therefore zero.

If f(x) = c, then f ’(x) = 0.
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2.	 Derivative of a constant (m) multiplying x:

If f(x) = mx, then f ’(x) = m

3.	 Derivative of the sum or difference of two functions of x:

If f(x) = g(x) ± h(x) then f ’(x) = g’(x) ± h’(x)

Although this looks intimidating in functional notation, it simply says that 
you differentiate each term separately. For example, the formula for a straight 
line (y = mx + b) is differentiated term by term, where mx plays the role of 
g(x) and b plays the role of h(x), using the first two rules above:

If f(x) = mx + b, then f ’(x) = m + 0 = m

And in a particular example,
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verifying what we already know (that m indicates the slope of the line).

4.	 Derivative of a power of x:

If f(x) = xn, the f ’(x) = nxn-1

This rule covers a variety of cases. When n is a negative integer the function is 
interpreted as one divided by xn:
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And when n is a fraction (such as 0.5 indicating the square root or 0.33 
indicating the cube root) the formula applies directly.

5.	 Derivative of a parabola. The general formula for any parabola is y = 
a + bx +cx2, and its derivative is just what you would think using rules 
1 – 4:

If f(x) = a + bx + cx2, then f ’(x) = b + 2cx

A polynomial is any function of constants times powers of x, and the parabola 
formula is easily extended:
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If f(x) = a + bx + cx2 + dx3 + . . . , then f ’(x) = b + 2cx + 3dx2 + . . . 

Let’s return to the parabola in Figure A.1 and find the top of the parabola 
using calculus rather than graph paper. The formula for that parabola is:

y = −x2 + 6x + 1

We find the maximum or minimum of a function by looking for places where 
the slope of the function is zero. Calculus allows you to tell whether a par-
ticular point where slope is zero is a maximum, minimum, or something else, 
but this is a bit beyond the scope of this brief review, and we know from the 
graph that we will find a maximum here.2 We find it by locating points where 
the slope is zero – that is, take the derivative, set it equal to zero, and solve 
for x. We label the resulting value with a* indicating that this is the particular 
value of x that is optimal:

f (x) = −x2 + 6x + 1;

f ’(x) = −2x + 6;

0 = −2x + 6;

6 = 2x;

x* = 3.

0

2
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10

12

0 1 2 3 4 5 6 7

Figure A.1  Slope at a point and the optimum
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One final rule is useful when working with elasticities. In the text, we defined 
elasticity between any two points on the demand (or supply) curve. There 
appeared to be arbitrariness in how we calculated percentage changes, solved 
by the midpoint formula. But calculus allows us to dispense with such arbi-
trariness by defining elasticity at a point. The point elasticity formula takes 
the limit of elasticity as the two points move together; here is the formula for 
the point price-elasticity of demand:
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In this form, it is clear why the price elasticity varies from zero to infinity 
along a straight-line demand curve. For the moment, assume that we are 
talking about a downward-sloping demand curve – neither horizontal nor 
vertical. The derivative in the formula is the reciprocal of the slope. Because 
the slope is constant, the reciprocal is also constant and under our assump-
tion it is finite and non-zero. However, the P/Q part of the formula is zero 
at the x-intercept of the demand curve (when P = 0), and undefined at the 
y-intercept (because we are dividing by zero.) As we move along demand 
towards the y-intercept, the fraction grows without limit, so at the y-intercept 
it is best defined as infinite. In between, it takes every possible value between 
zero and infinity. Relaxing our assumption of a downward sloping demand 
curve, there are other types of dividing by zero for vertical and horizontal 
demand curves, but it makes sense to say that the vertical demand curve is 
perfectly inelastic and the horizontal one is perfectly elastic, as we did in 
Chapter 9.

Is there a demand curve that has the same elasticity at every point on 
the curve and is neither a vertical or horizontal line? Looking at the 
formula, we see that the P/Q ratio gets smaller and smaller as we move 
from left to right, which we could counter if the derivative becomes 
bigger  and  bigger.  One can show that the following demand curve does 
the trick:

Q = APε

	 where: A is a positive constant and
	 ε is the constant price elasticity of demand

This formula is very useful for estimating demand curves, as we shall see 
below in the section on regression, where the elasticity of demand may be 
found from a particular specification of a regression equation.
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3	 Statistics

In the modern world, managers are expected to be “data driven” that is, to 
use data to make intelligent decisions about how they should manage their 
organizations. Doing this often involves employing techniques from statis-
tics. To learn statistics, it is vital to first understand the concept of probability. 
Probability undergirds the analysis technique of “hypothesis testing,” which 
is central to statistical analysis.

Much of what we now call statistics grew out of the world of gambling. If you 
draw a card at random from a regular deck of cards, what is the chance that card 
will be red (1/2), what is the chance that card will be a queen (1/13), what is 
the chance that card will be a red heart (1/52)? These chances can be charac-
terized as probabilities, and have particular properties, as described below.

Probabilities

A probability is a number assigned to some outcome of an experiment, such as 
drawing a card from a standard deck of cards, which must conform to two rules:

1.	 Each probability must be a value between zero and one; 0 ≤ p(x) ≤ 1 
where x is the outcome in question.

2.	 The sum of the probabilities associated with mutually exclusive and 
collectively exhaustive outcomes must sum to one; Sp(x) = 1 for all 
outcomes x.

Indeed, any assignment of probability values that follows these rules can be 
called a “probability distribution” even if these values are assigned subjec-
tively and even if they do not reflect reality. So, if your home team in football 
has a woefully poor record, despite that fact, you can still assign optimistic 
probabilities to the chance for it to win the Super Bowl, for example:

p(win) = 0.95
p(lose) = 0.05.

Such a set of numbers is called a subjective probability distribution since it is 
based on an individual’s or group’s judgment. Even if those probabilities do 
not seem to make sense to anyone else given your team’s history, since it fol-
lows the rules specified above it is still a legitimate probability distribution.

More commonly, probabilities are specified by looking at outcomes either in 
terms of relative frequency, as in determining the probability of drawing a red 
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card from a standard deck of cards, or in the long term, as in the proportion 
of heads one would see if a coin was flipped a large number of times.

Assigning probability values to possible outcomes of experiments allows us 
to talk about whether an outcome is a rare or a common event. The prob-
ability of a common event is relatively large; for example, the probability that 
a randomly selected dog will have four legs is close to one. By contrast, the 
probability of a rare event is small, close to zero. For example, the probability 
of a randomly selected person earning a perfect score on the GRE test is very 
small.

Hypothesis testing

This perspective about large and small probabilities associated with common 
and rare events, allows us to discuss a technique used in statistics and econo-
metrics called “hypothesis testing.” Hypothesis testing is not a mysterious 
endeavor, but something that people do every day in some form or another. 
It simply involves assigning probabilities to the way the world is, analyz-
ing some information that you have recently gathered, and asking whether 
you should change your view of the way that world works as a result of that 
analysis.

The classic example of hypothesis testing is found in the criminal justice 
system. In the United States, defendants are assumed to be innocent until 
they are proven, beyond a reasonable doubt, to be guilty. Other situations 
that involve hypothesis testing are also found in ordinary life, whenever a 
decision is made based on data available.

For example, imagine you are looking for something to cook for dinner, and 
there is a package of frozen hamburger meat in the freezer. Should you use 
that meat in cooking dinner tonight? Assuming that you can grill up the meat 
and make some tacos or burgers, what does it take for you to decide not to 
do that? Suppose you notice a very old “sell by” date on the package, or that 
it has freezer burn, or that the meat is brown or damaged. After assessing this 
information, you may decide not to use it for dinner. You have just performed 
a “hypothesis test” by assigning a probability to the statement that the meat is 
good to eat. You may have just spared your body a difficult evening.

In formal statistics, an “observation” is a set of variable values for an “obser-
vational unit.” For example, if our observational unit is a person, an observa-
tion for Fred might include Fred’s donations, income, gender, and shoe size. 
If the observational unit is an organization, an observation for Economists 
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Anonymous might include EA’s total revenues, total expenditures, expen-
ditures on coffee, and donations received. A set of observations is called a 
“data set.” The ideal data set is the population, including an observation for 
every observational unit in existence. The population Fred belongs to could 
include everyone alive today, everyone alive today in the USA, or everybody 
who has ever lived or might be born in the future, depending on what you 
want to study. A sample is a more limited set of observations, for example, 
a representative group of people who answered a survey asking about their 
donations, income, gender, and shoe size. A statistic is a number calculated 
from a data set, such as the average shoe size.

A statistical hypothesis is a statement about a statistic or a pair of statistics 
that could be computed from the population data set if we only had data 
on everyone in the population. For example, we might want to know the 
average donations made by every household in America. We might hypoth-
esize that the true population value for this statistic is $2,000, but we 
only have data for about 6000 households who answered the Philanthropy 
Panel Study survey in a particular year. Or we might want to know whether 
population-average giving by unmarried females equals the population-
average giving by unmarried males. Here we are comparing two sample 
statistics.

Usually we care about whether a hypothesis (called the “null hypothesis” 
and symbolized H0) is true, but since we cannot directly prove that it is true, 
we set up an alternative hypothesis (H1) that will not be true given our null 
hypothesis. If we reject the null hypothesis, we do so because it makes a pre-
diction inconsistent with the evidence from a sample. If we don’t reject the 
null hypothesis, we say that we have “retained” the null hypothesis, although 
we cannot say that we have “accepted” it. In the first example, the hypothesis 
that there is no difference between the population average and $2000 is the 
one we call null, so we have:

		  H0: Population-average household giving is equal to $2000

		  H1: �Population-average household giving is not equal to $2000 (it is 
either greater than or less than $2000).

In the second example, the hypothesis that there is no difference between 
female and male giving is the one we call null, so we have:

		  H0: �Population-average giving by single females is equal to population-
average giving by males.
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		  H1: �Population-average giving by females is not equal to population-
average giving by males.

We then perform the hypothesis test, using sample statistics, to see if the 
evidence supports our alternative hypothesis. Suppose the average donation 
in our sample is $1950. This evidence gives us little reason to reject the null 
hypothesis because it is relatively common to have a sample mean only 2.5 
percent different from the population mean. Alternatively, suppose another 
sample from the same population yielded an average donation of $6 mil-
lion, which could happen if the second sample included the Bill and Melinda 
Gates household while the first sample did not. The second sample gives us 
reason to reject the null because it would be very unusual to have a sample 
mean that is so vastly different from the population mean.

In the classic example of hypothesis testing, in the criminal justice example, 
the null hypothesis is that the defendant is innocent, while the alternative 
is that the defendant is guilty. It is up to the prosecutor to present enough 
evidence to reject the null hypothesis in favor of the alternative. Some such 
evidence might be videos of a bank robbery, stolen money on the robber’s 
person, or witnesses that observed the crime. The job of the defense attorney 
is to hold the prosecutor to this burden, and to make sure that no laws are 
broken in that process.

Suppose the manager wants to know how to recruit volunteers, and her 
choice depends on the volunteer’s opportunity cost of volunteering, which 
is the after-tax wage rate (at least to a first approximation – see Chapter 6). 
The manager believes that the average after-tax wage is about $10.00 per 
hour and wants to know whether this is a reasonable estimate. She could 
do so by surveying a sample of volunteers and calculating several things in 
order to determine whether the evidence does not reject the hypothesis that 
the average after-tax wage is $10.00 (in which case this is a “reasonable” esti-
mate) or does reject the hypothesis (suggesting this estimate should not be 
used).

First, we need to know the hypothesized value of the population mean we 
are testing for. This is often designated as “μ,” the Greek letter mu that corre-
sponds with our m (as in mean). We also need to know the value of the vari-
ance which is symbolized by “σ2” (sigma squared). The population variance 
of the variable X is the average squared deviation of Xs from the population 
mean, where the average is computed across all values that X takes in the 
population. When there are a finite number of possible values for X, the 
formula is:
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where: 	�i is an index for observations in the population. If there are I observa-
tions, i takes each value in the set {1, 2, 3, . . ., I}.

The variance of X is measured in units that are the square of the units used 
for X, but it is often convenient to work with the positive square root of 
variance because it is measured the same way as X. This square root is called 
the standard deviation of the variable used, symbolized by the Greek letter 
sigma “σ” that corresponds with our s (as in standard deviation). The stand-
ard deviation measures how spread out the values of our variable are. If all 
observations in the population take the same value, there will be no spread 
between the observations of X and the mean of X and so σ will equal 0. The 
larger the value of σ, the more spread out is the data.

When σ is known for the population, hypothesis testing uses the stand-
ard normal distribution, which is a bell curve with μ = 0 and σ = 1. Most 
hypothesis tests are about the population mean of a variable. Suppose the 
null hypothesis is that μ = k, where k is some constant number. For example, 
if we wanted to know whether variable X is associated with a change in vari-
able Y, the variable we want to test is the slope of the graph of X against Y. 
A null hypothesis of no association is equivalent to the hypothesis that the 
average slope (k) in repeated sampling would equal zero. We test this hypoth-
esis using a sample average, denoted as 
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, and a sample standard deviation, 
denoted as “s.” The formulas for these sample statistics are:
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	� where: n indexes observations in the sample, rather than those in the 
population.3

One more sample statistic must be defined before we conduct any hypothesis 
tests, the standard error. This measures the spread-outness of the distribution 
of sample means, rather than the spread-outness of the individual observa-
tions in the sample, but the two measures are related by this formula:
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These sample statistics are random variables because they vary across sam-
ples. This allows us to calculate a “Z-statistic,” another random variable, as:
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Using a remarkable theorem called the Central Limit Theorem, we know 
that the Z statistic approaches the standard normal distribution as sample 
size increases, provided X can take values from negative to positive infin-
ity and has finite variance (the details of the theorem are far beyond this 
brief introduction). For this distribution, 95 percent of sample means will 
lie between a Z statistic of -1.96 and +1.96. Rounding slightly, this means 
that if your sample average is two standard deviations or more from the null 
hypothesis k, you can reject the null hypothesis with 95 percent confidence. 
The approximation is less good when sample size is less than 30, so for small 
samples we calculate a more exact “t-statistic” in a similar fashion and com-
pare it with appropriate probability tables.

In rejecting a null hypothesis, there is always the possibility of making a 
mistake, and such errors can occur in two directions. We are concerned with 
the possibilities of either rejecting a true hypothesis, or of not rejecting a 
false hypothesis. However, we are most often particularly concerned with the 
chance that we incorrectly reject a true hypothesis, as would be the case if an 
innocent person is sent to prison in a system where people are assumed to be 
innocent until proven guilty. This probability characterizes a “Type I error” 
and is often designated as “alpha.” If the probability of finding a particular 
value is smaller than the value of alpha (say 5 percent) that we are willing to 
live with, then we can reasonably reject the null hypothesis.

Although the term “reject” sounds very negative, it is actually what we want 
to do. No one is interested in affirming that the world looks exactly as we 
thought. Rather, we want to set up the null and alternative hypotheses so 
that a rejection of the null hypothesis will lead us to re-define a standard view 
of the world. For example, in 1492, most people thought that the world was 
flat, and that one could sail off the edge of it if one sailed too far. However, 
Christopher Columbus, suspecting that the world was round, sailed for quite 
a while and seemed to have sailed around the entire planet. This led people 
to rethink their view of the Earth as a disk suspended in space. The original 
view of the flat world, the null hypothesis, was rejected, in favor of the alter-
native hypothesis that proposed the spherical world that we now take for a 
fact. However, it is important to remember that a failure to reject the null 
hypothesis does not mean the null hypothesis is true. It just means that the 

¯
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evidence is insufficient, and the null hypothesis might turn out to be false if 
more evidence (a larger data set or one with more variation in the variable in 
question) is introduced.

Hypothesis testing with computers

In numerical situations, it is often useful to perform hypothesis tests using a 
statistical computer program, such as EXCEL, SPSS, Stata, or SAS. In per-
forming such tests, a value is proposed for a hypothesized mean value of a 
variable. The computer uses this information, the test data provided, and the 
mean, standard deviation, and standard error calculated from that data to 
compute a Z-statistic or a t-statistic in much the same way we did above. The 
programs look up the probabilities and report the results of hypothesis tests 
in terms of the confidence level or “p-value,” which is 1– the confidence level. 
Rejection of the null with 95 percent confidence corresponds to a p-value of 
5 percent or 0.05, meaning that the sample mean statistic would be this far 
from the hypothesized population mean for less than 5 percent of possible 
samples when the null is true.

Computer programs that allow one to test null hypotheses on a single set of 
data also allow us to compare two or more subsets of data. Doing so some-
times requires assuming that the data subsets are somehow naturally related 
to each other. If this is the case, a “paired samples test” is most appropriate 
– for example, comparing test scores for incoming students to those of the 
same students after they complete a training program. Alternatively, it is pos-
sible that the data points are not naturally related to each other, as when 
comparing outcomes from an educational program that runs in several dif-
ferent distinct neighborhoods in a city. If there is no natural relationship 
between sets of observations, a hypothesis test on “independent samples” is 
appropriate. For independent samples, whether or not the variation (stand-
ard deviations) within the different groups are assumed to be equal will play 
a role in the calculation of the test statistic and therefore the p-value obtained 
from the test. How this is done varies among statistical programs, so details 
should be consulted in the documentation accompanying any such program.

Analysis of variance (ANOVA)

One type of hypothesis test that may be particularly useful for nonprofit 
managers and social entrepreneurs is “Analysis of Variance” generally known 
as ANOVA.4 This test examines several groups of data and asks whether the 
mean of a particular variable is the same for the different groups. ANOVA 
compares variance between different groups to the variance within those 
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groups. If the variance between groups is greater than the variance within 
the groups, then one concludes that the means of the groups are differ-
ent. ANOVAs are usually used to compare sample means among three or 
more groups, testing the null hypothesis that all of those means are equal. 
Again, this is best done with software, where the analyst specifies a discrete 
grouping variable that may influence a specified dependent variable. For 
example, a nonprofit manager may want to know if students from differ-
ent neighborhoods show the same level of improvement in study skills after 
attending an after-school program. The dependent variable will be the level 
of improvement in study skills, while the grouping variable will be the differ-
ent neighborhoods in which the program is offered. As before, if the p-value 
obtained from this hypothesis test is smaller than some pre-determined level 
(typically 0.05, 0.01, or 0.001 depending on what convinces you that the 
null should be treated as false) the null hypothesis (that the programs work 
equally well for the average student) is rejected in favor of the alternative 
(that not all the average levels of improvement are equal5). This implies that 
at least one group showed a significantly different increase in study skills than 
did the others.

Nonparametric tests

The statistical tests outlined above require the analyst to make assumptions 
about the distribution of variables in the data. For good reason, it is common 
to assume that statistics calculated from a sample are normally-distributed 
across samples regardless of the distribution of the raw data used to construct 
those averages. This is the central limit theorem, but it relies on limiting 
distributions that may not be accurate for small or moderate sample sizes, 
and the central limit theorem does not apply when the statistic cannot take 
values outside a certain range. The tests we have described so far are paramet-
ric, meaning that they depend on the two parameters that fully describe the 
normal distribution (mean and variance). Parametric tests are most powerful, 
meaning that they are highly likely to reject the null hypothesis when the null 
hypothesis is false for the population, but only when the normality assump-
tion is true for the calculated statistics. Nonparametric tests are appropri-
ate when you are not sure whether the normality assumption is accurate, 
particularly in small samples. The Mann–Whitney U test (also known as the 
Wilcoxon Rank Sum test) is a nonparametric extension of the parametric 
t-tests and Z-tests. The null hypothesis for this test is that two samples are 
drawn from the same population against the alternative that they are drawn 
from different populations. Two nonparametric generalizations of the paired 
samples t-test are the sign test and the Wilcoxon Signed Rank Test. The 
Kruskal–Wallis test is used to compare medians among multiple comparison 
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groups. Some details of such tests, which may be very useful for managers 
wishing to learn from data sets that are not necessarily normally distributed 
may be found in documentation accompanying the statistical programs that 
perform these tests, but see, for example Sullivan (n.d.) for a more complete 
description of the tests given herein or Gibbons and Chakraborti (2011) for 
a more advanced treatment.

Correlation

Two variables are said to be correlated when they move systematically 
together in the same direction or opposite to each other. If they move in the 
same direction, the “correlation coefficient” is a positive value between 0 
and 1; when they move opposite each other, the correlation coefficient has a 
negative value between 0 and -1. Again, while it is possible to compute these 
values by hand, it is usually best to use a statistical computer package.

Note that two values can be correlated but not derived from a cause and 
effect relationship. For example, it is possible for an organization to use both 
more volunteers and more paid labor when demand for its services increases. 
While both paid and volunteer labor may increase at the same time (leading 
to a positive correlation coefficient between the time series of each variable), 
one is not causing the other. Rather, these changes come about because of 
an increase in demand for the organization’s services. To analyze causation, 
one needs a model derived from theory and the use of more sophisticated 
statistical techniques (see Angrist and Pischke, 2014).

Regression

The hypothesis tests discussed above analyze information about a single vari-
able or the relationship between two different variables. Similar analysis can 
be extended to discern how several different variables interact. For example, 
how are the outcomes of an after-school program influenced by the educa-
tional backgrounds of a child and the child’s parents? In regression analysis 
the relationship between variables is studied while holding the influence of 
other variables constant. As noted below multivariate regression analysis 
is an important analytical tool that economists use to estimate economic 
relationships from empirical data.

4	 Econometrics

Managers of nonprofit organizations and social enterprises require informa-
tion such as knowledge about the demand curve for their services. However, 
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getting this information may be difficult. Some obvious approaches may not 
yield reliable estimates. Asking people how much they are willing to pay for 
a service may lead to a situation of “moral hazard,” where it is in the respond-
ent’s own interest to underestimate what they are willing to pay, knowing that 
their response will have a direct effect on their wallet. Two other approaches 
are to analyze natural data using econometrics (this section), the science of 
statistics applied to economics, or to analyze data from a controlled experi-
ment (the last section of this Appendix).

Simple and multiple regression

Regression analysis is a set of statistical techniques used to quantify the 
relationship between one dependent variable and one or more explanatory 
variables and is the basic workhorse of econometrics. The dependent vari-
able is something you would like to explain or predict, and the explanatory 
variables do just that. Some synonyms, or near synonyms, for explanatory 
variables are regressors, covariates, independent variables, or right-hand vari-
ables. Different formulas are used to compute this relationship under differ-
ent circumstances; an estimator is a particular choice of formula. The most 
common model is the linear one, which, with one explanatory variable, looks 
like this:

Di = a + bXi + ei

	 where: D is the dependent variable, for example, donations, plotted
	 on the vertical y-axis

	 X is the independent variable, for example, income, plotted on  
	 the horizontal x-axis;

	 a is an unknown constant representing the y-axis intercept for  
	 the regression line (average donations for those with zero  
	 income);

	 b is an unknown constant representing the slope of the  
	 regression line (the increase in average donations when  
	 income increases by one unit);

	 e is a variable known as the error term and represents the  
	 difference between the amount of donations predicted by the  
	 model and the actual amount of donations for each  
	 observation in the data;

	 i is an index for observations. If there are I observations, i  
	 takes each value from the set {1, 2, 3, . . ., I}.
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Standard econometrics software requires that you supply a data set contain-
ing the variables D and X and specify that you want D to be the dependent 
variable and X to be an independent variable. The program will calculate 
estimated values for the two parameters a and b by calculating the line that 
best fits the scatter-plot of the data. By far, the most common estimator is 
Ordinary Least Squares (OLS), which finds the values of a and b that mini-
mize the sum of the squared deviations between the observed and predicted 
values of the dependent variable (see Figure A.2).

The a and b estimates produced by a regression are typically symbol-
ized by placing a caret (hat) above the corresponding Greek letter. So 
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 (alpha hat) is the estimated intercept of the regression line, and when 
certain assumptions about the data are met, is the best approximation 
you can obtain to the true population intercept a, and 
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 (beta hat) is 
the best approximation to the population slope b. Because the estimates 
are sample-dependent, 
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 are random variables, and we can base 
hypothesis tests on the values they take. We might want to test whether 
there is any linear relationship between income and donations, which 
amounts to a test of H0: 
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 = 0. The computer software will calculate the 
standard error and run a t-test automatically, reporting a p-value or a 
significance level.

In the example above, donations are a function of a single explanatory varia-
ble, but there are many other variables that also explain donations. Regression 
with one explanatory variable is called simple regression, so next we consider 
multiple regression with two explanatory variables. Suppose we also have data 
on the age of the household head. We could then estimate:

Di = a + b
1
Xi + b

2
Ai  + ei

	 where: A is the age of the household head;

Y

X

Y = � + �X

a

Figure A.2  Ordinary 
least squares regression
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	 b1 is an unknown constant representing the slope of the relationship  
	 between income and donations while age is held constant;

	 b2 is an unknown constant representing the slope of the relationship  
	 between age and donations while income is held constant.

	 all other variables are as defined previously.

When this equation is estimated, the software will compute a plane of best 
fit in a three-dimensional scatter-plot of the data, with income and age on the 
x- and y-axes and donations on the z-axis. 

ii 

	 SE 5
s

"N

	 Z 5
X2 k

SE

â
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 is the estimated slope of a slice 
through the plane that holds age constant, interpreted as the marginal impact 
of income on donations, while 
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 is the estimated slope of a slice through the 
plane that holds income constant, interpreted as the marginal impact of age 
on donations.

Comparing our simple and multiple regression examples, we get a more 
accurate estimate of the independent effect of income on donations in 
the latter. This is because income and age are somewhat related, as aver-
age wages generally rise with age. When we don’t control for age, some 
of the effect of age on giving is wrongfully attributed to income. This is 
an example of omitted variable bias, which occurs whenever you omit a 
relevant explanatory variable from your estimation. Here, a relevant omit-
ted variable is one that (a) is correlated with the dependent variable, and 
(b) is correlated with one or more of the included explanatory variables. 
In contrast, our multiple regression calculates the independent effect of 
income after controlling for age using the independent variation of each 
explanatory variable.

There is no particular reason to suppose the relationship between income 
and donations is best summarized by a straight line, and the pattern of error 
terms may suggest a particular curved function better fits the data. Consider 
the following example:

Di = a + b
1
Xi + b

2
Xi

2 + ei

In this equation, we are finding the parabola of best fit between income and 
donations. The alphas and betas will be estimated by your software for your 
particular data set but suppose that it just so happened that 

ii 

	 SE 5
s

"N

	 Z 5
X2 k

SE

â
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and 
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. Then our estimated relationship between income and dona-
tions would be the parabola already illustrated in Figure A.1. That parabola 
starts with a steep slope, which would be interpreted here as a large marginal 
effect of income on donations for low levels of income, and that flattens and 
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turns downward sloping, so the marginal effect decreases then turns negative 
as income increases. The scale of this parabola is such that this would be a 
very silly result to obtain – donations are not maximal when income = $3, 
and a person earning $5 would not give less than a person with income of 
$3. But let’s change the scale a bit. Suppose we are measuring income (on the 
horizontal axis) in dollars per second. There are 3600 seconds in an hour, so 
with this scale, donations are maximal when income is $10,800 per hour, a 
well-paying job indeed, but the parabolic shape is now a whole lot less silly. 
This parabola still has the problem of predicting something we don’t believe 
for people earning more than $10,800 per hour, but the parabola may fit the 
data reasonably well for everyone in our sample, which is unlikely to contain 
any super-high earners, and so this form is often used.

Another curve used instead of a straight line is this one:

ln Q  i
D = a + b ln Pi = ei

This natural log/natural log specification is perfect for estimating demand 
curves that have constant price elasticity, and as we argued in Chapter 9, 
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 is 
an estimate of the price elasticity.

When and why should ordinary least squares be used?

Recall that an estimator is the formula used to fit the curve to the data, and 
that OLS, which minimizes the sum of the squared error terms, is the most 
commonly used estimator. It is time to unpack that statement. First, some 
background on desirable properties of estimators:

zz Bias: An estimator is biased if the expected value of the parameter is 
different than the population parameter. This means if we compute 
alphas and betas from an unlimited number of independent samples, the 
average values of these coefficients should be the same as the intercepts 
and slopes of a regression line fitted to the population as a whole. All 
else equal, we want an unbiased estimator, although sometimes in more 
advanced econometrics, we are willing to trade a little bias against more 
precision.

zz Efficiency: An estimator is efficient if it has the smallest possible 
standard errors for the parameter estimates. This means that the “plus/
minus” range for the slope and intercepts is as small as possible. We 
note that this is a vastly simplified definition designed to get the main 
idea across, and standard textbooks will give you a more nuanced 
definition.
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zz Consistency: An estimator is consistent if, as sample size increases, 
parameter estimates converge on their population values.

OLS estimates can be shown to be unbiased, consistent, and efficient 
(within the class of linear unbiased estimators) when the data satisfy certain 
assumptions:6

zz Sample size: You cannot pin down the slope and intercept if you only 
have a single observation. Any line drawn through that point would have 
perfect fit. While it is always better to have a large sample, the minimum 
number of observations before you can use any estimator is equal to the 
number of regressors plus one.

zz Multicollinearity: when two variables always move together, they are 
said to be perfectly collinear. When the way in which one variable 
moves is always determined by a linear combination of changes in other 
variables, they are said to be perfectly collinear. For example, suppose 
our data consisted of couples with no children, and we wanted to find 
the impact of income from the husband, impact of income from the 
wife, and income of the household on giving. Our explanatory variable 
household income is perfectly collinear with the other two variables 
because household income is defined as income of the husband plus 
income of the wife. In order to estimate coefficients for each of our 
betas, our data cannot be perfectly collinear. This assumption has a less 
obvious implication – in order to avoid perfect multicollinearity, each of 
our regressors has to vary independently within the sample. Such vari-
ation is a good thing to have, because we obviously could not estimate 
the effect of income on donations from a sample where everyone had 
the exact same income.

These first two assumptions are needed for any estimator. The next two 
assumptions are necessary and (together with the first two) sufficient to 
establish that OLS is unbiased:

zz Random Sample: Your sample is obtained in a way that makes it rep-
resentative of the population you are trying to model. This is an issue, 
for example, in telephone surveys. It is cheap and easy to randomly 
select land-line phone numbers, but costlier and more problematic to 
randomly select from all phone numbers, including cellular. If you run a 
cheap survey selecting from land-line phone numbers, your results will 
not necessary be typical for the population.

zz Zero Conditional Mean: The error term represents the effect of all 
the determinants of the dependent variable that are not included as 
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explanatory variables in your regression. The zero conditional mean 
assumption, intuitively, is that none of the excluded variables (hidden in 
the error term) covary with the included ones, and also that all relevant 
variables are included so that no bias results. More precisely, this assump-
tion states that the expected average error conditional on the included 
variables in the regression is the same as the expected average uncondi-
tional errors, and that both are equal to zero.

Our simple regression example above fails the zero conditional mean 
assumption because it leaves out age, which is correlated with both income 
and donations. The multiple regression example does better here, although 
there are still many excluded variables that covary with both donations and at 
least one of the variables income and age.

In order to satisfy the zero conditional mean assumption, the curve you 
estimate has to have the correct shape. Suppose that the true relation-
ship between income and donations is a parabola, but you mistakenly 
fit a straight line to the data, omitting the income squared term. Income 
squared is correlated with income and is also a determinant of donations, 
thus correlated with the error term, so the assumption fails. The worst 
case here would be if your data contains an equal number of observations 
where the income level is on the upward-sloping part of the parabola as on 
the downward-sloping part. Then you might get a horizontal straight line 
and your test on the slope would be unable to reject the null hypothesis. 
You would wrongly conclude that there is no evidence of a relationship 
between income and donations.

One additional assumption insures that OLS is also efficient:

zz Homoskedasticity: When the expected variance of the error term is 
the same for all possible observations, the error process is called homo-
skedastic. When there is a systematic difference in the variance of the 
error term associated with any of your regressors, the error process is 
heteroskedastic.

When all these assumptions hold: sufficient sample size, absence of perfect 
multicollinearity, zero conditional mean, and homoskedasticity, OLS pro-
duces unbiased estimates that are efficient within the class of linear unbiased 
estimators. This is the Gauss–Markov theorem (useful to know if you want 
to show off) and is often acronymically summarized: OLS is BLUE (Best 
Linear Unbiased Estimator).
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If the first two assumptions are violated, then the only way to fix this is to get a 
new sample. But there are other known estimators that have good properties 
when the last two assumptions are violated. For example, heteroskedasticity 
can be remedied using EGLS (Estimated Generalized Least Squares) or the 
White/Huber Heteroskedasticity Robust estimator.

One additional assumption is often suggested – that the error term is nor-
mally distributed. This assumption is not necessary for OLS to be unbiased 
and efficient but helps to specify the hypothesis tests. The normality assump-
tion is critical when the zero conditional mean assumption is violated.

An example

To do these calculations, we use a statistical package to create the resulting 
equation. There are many such packages, including Excel, Minitab, Stata, 
SAS, and SPSS. As Excel is the statistical package that is almost always availa-
ble to managers, the following illustration uses EXCEL. The interpretation is 
very similar for other statistical packages, but one should consult the instruc-
tions and documentation that accompany any such package for details.

To run a regression, first enter data into an EXCEL spreadsheet. To perform 
linear estimation, make sure that the program includes the LINEST function 
in EXCEL. If it is not immediately available, add it to the package.7

Under “Data Analysis,” choose “regression” and highlight the appropriate 
columns to use as dependent (y) variables and independent (x) variable(s). 
At least one independent variable must take on all possible values on the 
number line, and not be limited to values such as 0, 1 or a collection of a lim-
ited number of values, as with a Likert scale. Once dependent and independ-
ent variables are entered, the computer will give you output that describes 
the relationship between the dependent variable and the independent 
variable(s).

An example of the results from a regression performed on EXCEL asking 
about the relationship between age and education is shown in Table A.1. 
This example uses data from the 1993 “General Social Survey” or “GSS” 
The regression estimates a relationship between age and educational level of 
respondents to this survey. This survey is collected by the government and is 
most commonly used by social scientists. While this example uses only one 
independent variable, the concepts presented here are similar to the results 
found from multiple regressions.
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The output from this regression is a line representing the relationship 
between age and education level. Putting the coefficients together gives the 
estimated line (linear equation) as:

Education = 15.050 – 0.0244 (Age of respondent)

Note that this equation indicates that for each additional year of life, the 
level of education actually falls in this data set, which may seem odd. 
However, think about who probably answers this survey, conducted over 
the phone to a sample of people in the U.S. It is likely that it is mainly older 
people, and that higher levels of education are less likely to appear in the 
responses of this population. (The proliferation of college degrees and 
advanced degrees is only a recent phenomenon, and these degrees are less 
likely to be found in people in the later years of their lives, the very people 
who may be most likely to answer such a survey.) When looked at from 
this perspective, the negative coefficient on Age is not surprising. Note also 
that the constant, 15.050, reflects all the information not determined by the 
variable Age.

Table A.1  EXCEL regression – relationship between age and education

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.132246

R Square 0.017489

Adjusted R Square 0.014192

Standard Error 2.977084

Observations 300.00

S 5.30

ANOVA TABLE

df SS MS F Significance F

Regression 1 47.01401 47.01401 5.304508 0.021959

Residual 298 2641.183 8.863029

Total 299 2688.197

Coefficients Standard

Error

t Stat P-value Lower

95%

Upper

95%

Upper

95%

 Lower

95%

Intercept 15.050 0.526 28.56 2.48E-87 14.01 16.08 14.01 16.086

Variable 

(Age)

−0.0244 0.0106 −2.303 0.02195 −0.045 −0.003 −0.045 −0.0035
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Several other pieces of information in this output require comment. “R 
square” is a measure of the percentage of the variation in the dependent 
variable that is explained by the independent variable(s). Here, R2 is equal 
to 0.017489, so less than two percent of the variation in education has been 
explained. However, this just means that there are probably other variables 
besides Age that help determine the value of a respondent’s education.

Next, note the ANOVA part of the printout. While an ANOVA test can be 
done directly on two variables, the ANOVA test as part of a regression tests 
the hypothesis that the entire regression is useless. Of particular interest in 
this output are the values presented as “p-values” (or, in some programs, 
“sig” values). These numbers ask what the probability is that we would find 
such results, if there was, indeed, no relationship between the variables being 
studied. In econometrics, we usually look for p-values to be at most 0.05, or 
even less. That means that there is still a 5 percent chance that there is no 
relationship between the variables being studied, given the statistical results 
that emerged from the regression. Here, the p-value for this test is reported 
as 0.021959. This means that there is only about a 2 percent chance that the 
resulting output would be found if there is actually no relationship among 
these variables. One can thus conclude that the hypothesis that there is no 
relationship between the variables must be rejected.

Finally, note the p-value reported for the independent variable. The p-value 
of 0.021959 on Age leads to a rejection of the hypothesis that this variable has 
no effect on the dependent variable, Education. We therefore conclude that 
Age is a statistically significant variable for the determination of a respond-
ent’s level of education.

Other estimators

Special kinds of data require special estimators. Here is a catalog of the most 
important ones:

1. If your dependent variable can only take the values 0 and 1. There are 
three estimators that are commonly used to estimate slopes and intercepts 
when the dependent variable has two categories. For example, we might want 
to test hypotheses about who will make a donation. For this, or any other 
yes/no question, we would code the dependent variable as a 0 if the person 
did not make a donation and a 1 if the person did make a donation. For 
such data, you would select between the linear probability model (which 
is what OLS is called for this kind of data), logit, or probit. Any of these 
three can estimate the marginal effect of a variable on the probability that 
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the dependent variable will take the value of 1. For example, if we explain 
the yes/no donation decision using household income as an explanatory 
variable, we can use the estimates to compute the effect of a $1 increase in 
household income on the probability that a household will make a donation.

2. If your dependent variable is censored. A variable is said to be censored 
when it is only reported for a subset of the range of values taken by a statisti-
cal distribution. When a variable is normally distributed, there will be a non-
zero probability that it takes any value, positive or negative, but variables like 
donations cannot take negative values. One approach to dealing with dona-
tions regressions is to assume that there is a latent (hidden) variable that can 
take positive or negative values, and reported donations are the greater of $0 
or the value of the latent variable. When “donations” in the latent variable are 
negative, this information is censored and a zero is reported. Another type 
of truncation occurs when a variable is “top-coded.” For example, survey 
respondents may be asked to report their actual donations if less than $1 mil-
lion or check a box for “$1 million or more” for larger donations. When the 
data is censored, regressions will violate the zero-conditional-mean assump-
tion, particularly for observations around the censoring point or points, and 
OLS estimates are said to suffer from “censorship bias.”

There are many estimators designed to eliminate censorship bias, and it is 
beyond the scope of this book to discuss the advantages and disadvantages 
of each estimator. At this time, the predominant estimator in the literature is 
Tobit, which uses the latent variable artifice. Another latent variable approach 
is non-parametric, CLAD (Censored Least Absolute Deviation). Others 
abandon the normal distribution assumption and the fiction of hidden 
negative donations, such as the GLM-Gamma estimator (Generalized Linear 
Model with a gamma link function). Some are specially tailored for duration/
survival analysis, with more complex censorship issues. For example, if we 
want to study how many donors continue to give every year for one year, two 
years, three years, and so on, and our data collection ends in year five, dura-
tion of donating is censored for anyone giving continuously for five or more 
years. The basic estimator for this is the Cox Proportional Hazards model, 
and many more complicated models are available.

3. If your dependent variable is a set of categories. Suppose you wanted to 
explain whether a household will make a donation of money only, a donation 
of time only (volunteering), donations of both, or donations of neither. We 
have four categories, and there is no natural ordering between them that ena-
bles us to assign numbers like 1, 2, 3, and 4 for the dependent variable. In this 
case, the common estimators are multinomial logit or multinomial probit. 
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Regression results can be translated into marginal probability statements, 
as in regular logit or probit, but now there are three independent marginal 
effects to calculate. For example, if income was an explanatory variable, we 
could estimate the marginal impact of a $1 increase in income on the prob-
ability the household will give money only, the probability they will give time 
only, and the probability they will give both. The three independent prob-
abilities give us the fourth probability (that the household will give neither) 
for free, since the sum of the probabilities must equal 100 percent.

A related problem occurs when the dependent variable is a set of categories 
that can be put into a natural order. For example, our survey may have asked 
households to answer a multiple-choice question like “I gave: (a) nothing; 
(b) between $0 and $100; (c) between $101 and $1000; (d) more than 
$1000.” The common estimators here are called Ordered Logit and Ordered 
Probit.

Conclusion

You can learn a lot from the statistical analysis of naturally-generated data. 
The main problem with such data is that everything is changing at once, but 
regression methods allow the analyst to sort out the independent effects of 
each explanatory variable for prediction and hypothesis testing.

5	 Techniques in experimental economics

Experiments using human subjects provide an alternative to econometrics, 
with advantages and disadvantages. In this section, we provide some details 
on how to conduct experiments that can help nonprofit and social enterprise 
managers with their work. First, we review the main ideas of an experiment, 
then we discuss recruiting and using subjects, and highlight some issues of 
experimental design. We follow with sections on analysis of results, and con-
clusions. As with the other sections of this Appendix, a full course on the 
topics is highly recommended.

Main ideas

An experiment starts with two or more groups of subjects. The groups differ 
from each other on the basis of a single characteristic under the control 
of the experimenter. Most commonly, the groups are called the treatment 
group and the control group, the former distinguished by having a charac-
teristic called the treatment. For example, one experiment used people col-
lecting money for the Salvation Army during the holiday season (Andreoni, 
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Rao, and Trachtman, 2017). In the control group, the experimenters used 
the current Salvation Army protocol, with someone dressed in a Santa suit 
ringing a bell and waiting for donations. The treatment group used the 
same method but asked the bell ringers to specifically ask shoppers to make 
a donation. The authors found that asking had a dramatic effect on the 
amount given when asked, but also on the tendency of shoppers to avoid 
being asked.

Each group has the same measurable outcome of interest, which may be a 
continuous or categorical variable. The main goal of the experiment is to esti-
mate treatment effects, which are the differences in outcomes between each 
pair of groups. Experimenters assign subjects to each group randomly, and 
this provides the key advantage of experiments over econometric analysis of 
naturally-generated data. Random assignment greatly reduces the possibility 
of self-selection bias that infects many econometric analyses.

In natural data, people typically choose whether to experience the treatment, 
and they do so for reasons that might correlate with the outcomes. For exam-
ple, we might use natural data to see whether commercial nonprofits that 
also ask for donations are better-off financially than commercial nonprofits 
that do not ask for donations. Asking for donations could be a treatment in 
an experiment but it is also a binary variable that you would want to use in 
a regression explaining the financial status of commercial nonprofits. The 
trouble in the latter case is that asking for donations is a random variable 
that is correlated with the error term, violating the assumption that the con-
ditional mean of the error term is zero. Intuitively, commercial nonprofits 
may choose to fund-raise because they are in a great financial environment, 
where people are wealthier and supportive of the cause. This great financial 
environment results in a spurious correlation between financial success and 
use of fund-raising.

Experiments eliminate self-selection bias by using random assignment. 
For example, the experimenter could select subjects from a pool consisting 
of commercial nonprofits that did not fund-raise, then randomly assign a 
treatment that caused the treatment group to begin fund-raising. Now, use 
of fund-raising is not correlated with any of the determinants of financial 
success, and the problem would seem to be eliminated. The only caution 
is that sometimes attrition – where some organizations stop participating 
before the experiment is complete – would be correlated with the error term 
(the prospects for financial success). Participation payments of sufficient size 
to subjects in the experiment would reduce or eliminate attrition and the 
possibility of attrition bias.
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To isolate the treatment effect, the groups should be treated as identically as 
possible, differing only in the treatment each receives. The experimenter can 
control many things, but not all determinants of the outcome. For example, 
it is known that many households concentrate their giving in the month 
of December. When running an experiment with a treatment designed to 
increase donations, the experimenter can avoid statistical bias by simply 
having both the treatment and control sessions in December, or by having 
both in months other than December. Other differences between the two 
groups are harder to deal with because random selection does not result in 
the same average level of subject characteristics in the treatment and control 
groups. For example, men and women respond differently to incentives to 
give (e.g., Croson and Gneezy, 2009), and when there is random assign-
ment, the proportion of females in the control group is unlikely to be exactly 
equal to the proportion of females in the treatment group, confounding the 
estimation of the treatment effect. This problem can be fixed several ways – 
by conducting separate experiments for men and for women, or by random 
assignment with gender quotas (which simply means that if the number of 
males assigned to a group is equal to the experimenter-determined limit, 
only females will be assigned to that group thereafter, and similarly if the 
limit for females is reached). Other factors are not measured, like individual-
subject beliefs, attitudes, emotional states, and experience, so you cannot 
conduct separate experiments or use random assignment with quotas to 
solve the problem. Although the average level of each of these characteristics 
is unlikely to be exactly equal across groups, the experimenter deals with 
these problems by placing a large number of subjects in each group, which 
makes average differences small.

In sum, a true experiment has the following characteristics: two or more 
groups, random assignment of subjects to groups, one or more treatments 
applied to some groups but not others, the treatments are under the control 
of the experimenter, and the only difference between groups, among those 
differences that the experimenter can control, is in treatments. Variations 
on these themes distinguish several types of experiments, and we shall 
consider three of them: lab experiments, field experiments, and natural 
experiments.

Lab experiments are most like true experiments. Economic decisions take 
place in a tightly-controlled environment, where the experimental design 
insures minimal differences between groups other than the treatment. 
Subjects in a lab experiment are aware that they are participating in an experi-
ment and have given informed consent to do so. The classroom experiment 
on free riding detailed in Chapter 12 is an example of a lab experiment.
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Field experiments use subjects who are unaware of their participation in an 
experiment. Subjects make their decisions in a natural environment as they 
go about their lives. For example, Landry et al. (2006) approached 5000 
households in a door-to-door fund-raising campaign, with each household 
randomly assigned to one of four treatments.

A natural experiment occurs when natural data is generated by a process 
approximating random assignment. The treatment is not under the control 
of the experimenter, so this is least like a true experiment. To approximate 
random assignment, the experimenter must persuade the reader that there 
are no variables that both determine whether the treatment is imposed and 
also what the outcome will be. For example, Zhang and Zhu (2011) looked 
at whether the reduction in group size when mainland China blocked access 
to the Chinese Wikipedia affected contributions (volunteering to write and 
revise content) by comparing residents in China with residents of Taiwan, 
Hong Kong, Singapore, and other regions of the world where people aware 
of the Chinese Wikipedia continued to have access.

Subjects

1. How many subjects are needed? It is always better to have more sub-
jects than less, but larger studies cost more. The number of subjects in each 
group determines the statistical distribution of group-average outcomes. 
In many cases, group-average outcomes will be well-approximated by the 
normal distribution as long as there are 30 or more subjects in each group. 
But the number of subjects also determines the statistical power of tests on 
the size of the treatment effect – that is, the ability of the test to reject the 
null hypothesis (typically, that the treatment effect is zero) when the null 
hypothesis is false. Statistical power is inversely proportional to the square of 
the number of subjects in each group, so in order to cut the standard error of 
effect size in half, you need four times as many subjects in each group. Many 
statistics packages include software that tells you the sample size necessary 
to obtain a given level of statistical power. More generally, group sizes should 
be related to the ratios of expected variances in the different groups and/or 
the relative cost of collecting data from a group (List, Sandoff, and Wagner, 
2011). These all account for sampling error, but there is an additional effect 
of group sizes on the homogeneity of groups. Recall that in order to control 
for unmeasured differences in the characteristics of groups, we need a large 
number of subjects. This effect also follows an inverse square law, but it is 
worth commenting on because sometimes treatment effects are different 
across individuals because there is an interaction between the treatment and 
an unmeasured variable. Accounting for all of this, when the budget is very 
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limited, you need at least 100 subjects in each group. That number is arbi-
trary but informed by experience.

2. Who should be in your subject pool? Designing an experiment requires 
careful thought about who participates in the experiment, and how their 
participation may affect the outcome of the experiment. Many laboratory 
studies use students as a convenient subject pool, but students are hardly 
representative of the population of greatest interest in most studies. For 
example, bonuses might affect students differently than they affect non-
profit workers or major corporate executives. Ideally, you want subjects that 
are randomly drawn from the population you are studying – line workers if 
you want to study the effect of bonuses on line workers, major executives 
if you want to study the behavior of this group. But it is cheaper to work 
with students and certainly more convenient, and many researchers make 
that trade-off, reducing the persuasiveness of results in order to keep things 
affordable.

In many circumstances, variations on pure random sampling may be nec-
essary or preferred. It may be desirable to “oversample” certain categories 
of subjects so that the subsamples are large enough to analyze separately. 
We discussed random assignment with quotas above, but the problem goes 
beyond the random assignment causing mismatches in unmeasured char-
acteristics. For example, if you want to know whether donations by Jews 
or by Protestants in the U.S. respond the same way to matching incentives, 
a sample of 200 subjects would be expected to contain only 2.8 Jews, not 
nearly enough for proper statistical analysis. For such a study, you would 
employ blocking, which, in experiments, means the same thing as stratified 
sampling in survey methodology. In this case, you would want a Jewish block 
and a Protestant block of comparable sizes, then you would use random 
assignment to treatments within each block.

3. Ethical considerations. Experimental research using human subjects 
requires preapproval in many countries to ensure that subjects will not be 
harmed. In the U.S. (and many countries have followed suit), this gener-
ally takes the form of approval by IRBs (Institutional Review Boards) set 
up at college campuses and other institutions that conduct federally funded 
research. Under the law, the requirement governs research funded by the 
federal government, but in practice it has come to be applied to any research 
conducted by college and university staff, and, regardless of employment 
status, to any research that the researcher would like to publish in an aca-
demic journal. IRBs require that risks be minimized and reasonable in light 
of anticipated benefits to subjects, that vulnerable populations receive special 
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review, that informed consent be obtained from each subject, and that data 
be maintained in a way that protects the privacy and confidentiality of sub-
jects. Generally, subjects need to receive a payment for the use of their time, 
else they would suffer unnecessary harm in the form of opportunity costs.

Experimental design

Experimental design concerns planning the details of an experiment to mini-
mize challenges to the validity of findings and to weigh cost versus quality 
issues. We have discussed some elements of experimental design above; in 
this section we will talk about the method of applying treatments, steps to 
include in your experiment, and the order of these steps.

When designing an experiment, the researcher must choose whether to use 
a between-subjects design or a within-subjects design. In a between-subjects 
design, different people (or organizations) are in the treatment group and 
any other groups. Thus, we must rely on the law of large numbers (differ-
ences in average characteristics of groups shrink as the number of subjects in 
each group increases) to claim that the only factor that explains differences in 
outcomes is the presence or absence of a treatment.

In a within-subjects design, the same people (or organizations) serve in both 
groups. We calculate a treatment effect for each subject by looking at the 
difference in outcomes when that subject receives the treatment versus expe-
riencing control conditions. The overall treatment effect is then the average 
of individual-specific treatment effects. This design does not need the law of 
large numbers to isolate treatment effects from most confounding factors, 
because most of the unmeasured variables remain constant over time for the 
subject and therefore cannot explain any difference in outcomes. But the 
order of the two conditions matters. Perhaps subjects respond more strongly 
to whichever condition comes first, because they are more interested at 
the beginning of the experimental session or for any other reason. If so, the 
order itself could be a confounding variable. Therefore, when using a within-
subjects design, we randomly assign the order of conditions (control then 
treatment; treatment then control) rather than randomly assigning a group.

Sometimes you want to study interactions between treatments. For example, 
Goering et al. (2011) wanted to know the effect of three factors on donations 
in response to direct mail solicitation – the persuasion strategy (which can be 
an appeal to facts, an appeal to emotions, or an appeal based on the author-
ity of the letter-writer), the visual design (with or without bullet points), and 
the complexity of the letter (at two grade levels for the language employed). 
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They employed a 3 x 2 x 2 factorial design (the numbers indicate the number of 
treatments in the persuasion, visual, and complexity factors respectively) that 
included twelve groups – one for each combination of the three factors. For 
example, one group received a letter that appealed to facts, used bullets, and 
used simple language; another group received a letter that appealed to emo-
tions, used bullets, and used advanced language. They could have analyzed each 
factor separately, with three experiments, but chose the factorial design because 
of the possibility of interaction effects between the factors. For example, the 
effect of simple language might be different when an appeal is made to the facts 
than when an appeal is made to emotions; the factorial design allowed them to 
detect all such interactions. The factorial design is complex and requires a large 
number of subjects but is often cheaper than one-factor-at-a-time experiments.

Economists traditionally ignored context effects because they were incon-
sistent with the simplified theory of choice that they had developed, but 
with the development of behavioral economics that is changing. Increasingly, 
economics experiments borrow techniques developed in the other behav-
ioral sciences. One such useful if controversial technique is called priming. 
Priming occurs when exposure to one stimulus influences the response to 
another stimulus or treatment, and the theory of priming includes “how cues 
that activate . . . the recall of specific social contexts and events alter current 
preferences and choices” (Molden, 2014, p. 4). A classic priming experi-
ment was conducted by Shih, Pittinsky, and Ambady (1999) who found that 
Asian-American women score higher on a math test when primed to identify 
themselves as Asian than when primed to identify as women. Some of the 
many experimental studies that use priming to better understand donations 
include Small, Loewenstein, and Slovic (2007), Ekström (2012), and Eckel, 
Grossman, and Milano (2007).

Sometimes, we want to understand why the priming works the way it does, 
that is, the mechanism behind the treatment effect. For example, if we want 
to test whether an altruistic frame of mind affects giving, we might show sub-
jects a video of parents caring for young children. The experiment can show 
whether watching the video affects giving, but unless the experimentalist can 
show that the prime actually induced an altruistic state of mind, we have not 
properly tested the theorized mechanism. In such cases, it is best to include 
a manipulation check, a way of measuring state of mind to see whether the 
prime is doing what we would like it to do. Psychometric scales, constructed 
from survey responses, are commonly used for this purpose.

Inexperienced experimentalists often use a pretest-posttest design, which 
means that the outcome variable of interest is measured both before and after 
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the experimental condition (treatment or control) is administered. That is 
unnecessary with random assignment and large groups, because we can safely 
assume that the treatment and control groups started with the same level of 
the outcome. Experiments only need to measure the effect by comparing the 
average outcome in each group after the conditions are administered.

A good logical order for the steps of the experiment is:

zz obtain informed consent,
zz provide instructions for the experiment and/or any necessary priming,
zz conduct manipulation checks to see that the instructions are properly 

understood, and that the primes have their desired effect on perceived 
context and state of mind,

zz administer the treatment and control conditions,
zz measure outcomes,
zz pay the subjects in a way that preserves their anonymity, and
zz if desirable, administer a post-experiment survey or interview.

But the experimenter should carefully consider whether this ordering is the 
best way to proceed for the experiment that will be conducted. The order 
of the steps might bias the results, affecting validity and interpretation. For 
example, suppose (as above) the manipulation check occurs before the 
experimental conditions are administered. Then there is the possibility that 
the manipulation check, rather than the manipulation itself, explains the 
results. If, instead, the experimental conditions come first, then perhaps the 
success or failure of the manipulation check is determined by experience of 
these conditions rather than the initial priming step.

Because experiments are expensive and experimental design is a complicated 
subject, you should always run a pre-test of the design on a small, independ-
ent, sample of subjects. Each subject should be carefully debriefed after the 
pretest to see how well each instruction was understood and to see whether 
the subject’s explanation of their behavior suggests that the experiment is 
testing what you want to test.

Analyzing results

A first step to analyzing experimental data is to create tables that display the 
mean outcome for each treatment or condition, along with standard errors. 
This may be displayed as a bar chart with standard error bars (lines cen-
tered atop the results bars that display the height of the bar plus or minus 
a standard error) or confidence interval bars (like standard error bars, but 



Methodological appendix  ·  39

extend roughly two standard errors above and below the bar at the 95% con-
fidence level). The extent of overlap between the two confidence bars can 
show whether the treatment effect is statistically significant, but to be sure, 
you should use the formal statistical test, particularly in a within-subjects 
experimental design (Belia et al., 2005). Another useful set of graphs is a 
histogram (a chart illustrating the frequency that a variable takes different 
values) of individual-subject outcomes within each group. This can show 
whether there are subtler patterns in the two groups that do not show up 
in comparisons of averages. For example, if half of the people in the control 
group donate $0 and half donate $100, average control group donations are 
$50. If everyone gives exactly $50 in the treatment group, the average treat-
ment effect is $0. But without the histograms, the analysis would miss the 
fact that the treatment effect is +$50 for half the sample and -$50 for the 
other half. The within group histograms can also reveal whether an outlier 
is responsible for an apparent treatment effect. If Bill Gates were in the treat-
ment group in a between-subjects design, then it will always look like there is 
a positive treatment effect on donations (one billion-dollar gift really messes 
up the average) whether a treatment effect exists in the population or not. 
Tests for differences in median outcomes, rather than mean outcomes, would 
be desirable in this case.

The central limit theorem, discussed in the Appendix section on statistics 
above, does not always apply to group averages generated in experiments, 
particularly for truncated outcomes where individual outcomes are concen-
trated around the truncation point. The histograms reveal such non-nor-
mality and suggest that nonparametric tests of the null hypothesis are more 
appropriate.

If you want to know the effect of measured variables that are not under exper-
imental control (like subject income or religious denomination) you would 
use regression analysis to calculate these effects. Controlling for variables 
that are only approximately equal across groups also improves the efficiency 
of the estimated treatment effect, although without covariates, treatment 
effects are unbiased. Finally, some disciplines emphasize ANOVA and related 
procedures rather than regression results, for testing null hypotheses.

Conclusion

No single study is fully persuasive, and each study faces challenges to internal 
and external validity. Although there are certainly exceptions, econometric 
analysis of natural data has better external validity because it includes a range 
of conditions and characteristics, whereas analysis of experimental data has 
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better internal validity because interdependent variables are not varying and 
covarying simultaneously; instead there are one-at-a-time changes known as 
treatments. Both kinds of studies have advantages and should be conducted 
when time and money are not obstacles for the researcher.

We have certainly not exhausted the subject of experiments. We haven’t 
covered the choice between conducting a lab or a field experiment, and 
the two have different sets of validity challenges. Nor have we covered the 
choice between within-subject and between-subject designs. We haven’t 
catalogued all the challenges to validity and discussed ways to deal with 
each challenge. Finally, we haven’t discussed quasi-experimental methods, 
which attempt to statistically adjust naturally-generated data, so it can be 
analyzed like an experiment. Instead, we have tried to give the social entre-
preneur or nonprofit manager enough background to understand new and 
useful results in behavioral economics, and the ability to design (perhaps 
with help) experimental studies particular to the management challenges 
he faces.
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REVIEW CONCEPTS

Analysis of Variance (ANOVA): An important technique for analyzing the effect of categori-
cal factors on a response. An ANOVA decomposes the variability in the response variable 
amongst the different factors. Depending upon the type of analysis, it may be important to 
determine: (a) which factors have a significant effect on the response, and/or (b) how much of 
the variability in the response variable is attributable to each factor.

Between-Subjects Design: When subjects in an experiment are randomly assigned to groups and 
some groups experience treatments and others don’t.

Block Design: When you want to estimate treatment effects for separate subgroups of the sample, 
each subgroup is called a block. You recruit a sufficient number of subjects in each block and 
then randomly assign subjects to treatments within blocks.

Censored Data: Data where the dependent variable is not reported when it falls beyond a range 
of values. If we imagine a hidden “donation” variable that could take negative values for certain 
levels of income and family size, the reported measure of donations available to the researcher 
is zero for all “donations” below zero.

Correlation: The way in which two variables move together. If they move in lockstep, so that every 
time an observation of one variable is above its average value, the corresponding value for the 
other variable will be above its average, we have perfect positive correlation and the correlation 
coefficient takes its maximum value (+1). If they move by contraries, so that in any observation 
where the first variable takes an above average value, the second variable has a below-average 
value, we have perfect negative correlation and the correlation coefficient takes its minimum 
value (-1). When the correlation coefficient takes a value close to zero, there is poor correla-
tion between the variables and there is no correlation at all if the correlation coefficient is zero.

Covariate: A variable used to explain the dependent variable. Synonymous with “explanatory vari-
able” or “regressor.”

Derivative: The slope of a function at a point. The limit of the slope of a line segment connecting 
two points on a function as the points move closer together.

Econometrics: Statistical analysis that is informed by economic theory and incorporates that 
theory into estimates. Used to test hypotheses, predict the future, and generate “what if ” 
predictions.

Error term: A variable in regression analysis that incorporates the combined effect of all the 
unmeasured and absent explanatory variables on the dependent variable. The vertical distance 
between the regression line and each observation.

Estimator: A formula for calculating a statistic used to infer unknown parameters in a statistical 
model. Applied to regression, the way in which a curve is fit to the data.

Exogenous: An explanatory variable is exogenous if its value is determined by forces that do not 
also determine the value of the dependent variable.
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Experimental Economics: The application of experimental methods to study economic 
questions.

Factorial Design: Used to study interactions between treatments. Treatments are classified 
into “factors” with levels. For example, an experiment might want income as a factor, which 
takes two levels: high and low. They might also want knowledge about the organization as a 
factor, with four levels: None; Read their form 990 data; Read their annual report; Serve as a 
Volunteer. The factorial design in this case would set up eight treatments, one for each combi-
nation of income and knowledge.

Homoskedastic: A property of the error term needed to ensure that OLS produces the Best Linear 
Unbiased Estimates. The error term is homoskedastic if the variance of the error is the same for 
all levels of covariates in the sample.

Multiple Regression: A way of fitting a curved surface to data with one dependent and more than 
one independent variables.

Nonparametric Statistics: Parametric statistics are random variables with known distributions that 
can be summarized by a small and definite number of parameters, like the normal distribution 
that is completely specified by two parameters – the mean and variance. Nonparametric statis-
tics either lack a distribution or have distributions where the number and nature of parameters 
is flexible and not fixed in advance.

Omitted Variable Bias: Bias in the estimated coefficients of a regression equation caused by the 
omission of some explanatory variables from the calculation due to lack of appropriate data. 
Important when the omitted variable is correlated with other explanatory variables and is also 
a statistically significant determinant of the dependent variable.

Optimization: Mathematical techniques to detect variable values that maximize or minimize an 
objective function, perhaps subject to constraints.

Ordinary Least Squares (OLS): A regression estimator that assigns parameter values by minimiz-
ing the sum of the squared deviations of dependent-variable observations from that predicted 
by the regression curve.

Population: The complete set of possible observations, which may be infinite in number.
Probability: A number between 0 and 1 (or 0 percent and 100 percent) that describes the likeli-

hood that an event will occur. Probabilities may be subjective or based on observed or theoreti-
cal frequencies.

Random Assignment: A process of placing subjects into groups (treatment and control) where 
each subject has an equal probability of assignment to each group.

Regression Analysis: A set of statistical processes for estimating the relationships among variables. 
It is a technique used for predicting the unknown value of a variable known as the (dependent 
variable) from the known value of two or more variables (independent variables) also called 
the predictors. It includes many techniques for modeling and analyzing several variables and 
for testing hypotheses about the effect of the independent variables on the dependent variable.

Regressor: A variable used to explain the dependent variable. Synonymous with “explanatory vari-
able” or “covariate.”

Sample: A subset of the population for which you have data and use that data in the analysis.
Self-Selection Bias: Bias in the estimated coefficients of a regression equation caused by the fact 

that the observational unit chooses the value of some covariates using factors that also deter-
mine the value of the dependent variable but are omitted from the list of covariates used. This 
causes a degree of spurious correlation that shows up as a violation of the zero conditional 
mean assumption.

Simple Regression: A technique for fitting a function to the relationship between a single 
independent variable and a single dependent variable.

Standard Deviation: A measure of the spread-outness of a variable in a sample or population, 
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calculating as the square root of the sum of squared deviations from that variable’s mean 
divided by the number of observations.

Standard Error: A measure of the spread-outness of a statistic calculated from a sample across 
samples. The standard error of the mean of a variable is generally equal to the standard devia-
tion of that variable divided by the square root of the number of observations.

Standard Normal Distribution: A normal distribution with a zero mean and a unit standard devia-
tion. The “normal distribution” is a bell-shaped curve indicating the likelihood that certain 
variables will take values along an infinite number line.

Statistic: A number calculated from a sample, such as the sample mean and variance.
Subjective Probability Distribution: A set of beliefs about the likelihood that a variable will take 

each possible value. These beliefs are updated by observations of the variable according to the 
rules of probability.

Treatment Effect: The difference in the average outcome between the treated and control groups. 
Interpreted as causal for well-designed experiments.

Variance: A measure of the spread-outness of a variable in a sample or population equal to the 
square of the standard deviation.

Within-Subjects Design: When subjects in an experiment experience all the treatment and control 
conditions, with random assignment of the order in which the conditions are experienced.

NOTES

1	 Technically, the demand function specifies the quantity consumers wish to buy at any Price, that is QD = 
f(P). For this problem, we work with the inverse demand function, that is, we solve for P as a function of Q.

2	 See sections on second order conditions from Stewart (2016). This text also provides additional informa-
tion about maximization in more than one dimension, as when there are several choice variables.

3	 The alert reader may notice that we divide the sum of squared deviations by N-1 instead of N when calcu-
lating the sample standard deviation s. This is because we use the sample statistic to estimate the population 
statistic, and need to correct for the fact that the numerator uses an estimate – the sample mean – instead of 
the true population mean.

4	 Not to be confused with “ARNOVA,” the Association for Research on Nonprofit Organizations and 
Voluntary Action, a group worth joining for those working in or studying the nonprofit sector.

5	 Note that the alternative is not worded as “all the groups are not equal,” as it is possible for two or more of 
the groups to be equal, with at least one definitely different.

6	 This version of the assumptions is based on Wooldridge (2016).
7	 To do this, include it as an “add in” through “options” under “file.”
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